
Practical Tips for Working with

Existing Code

Session Number

Tamar E. Granor, Ph.D.

Tomorrow's Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Voice: 215-635-1958

Fax: 215-635-2234

Email: tamar@tomorrowssolutionsllc.com

Sooner or later, almost every developer has to take over an existing application. This session

looks at tools and techniques for understanding how such applications work, improving the data

model, dealing with non-developers who wrote the original code, and more.

Over the last few years, much of my work has been with existing applications. No matter what

my role is in these projects, there are some principles that apply and some tools that make the job

easier. In this paper, I'll look at issues from dealing with the client to understanding how the

application currently works to handling non-normalized data and much more.

Getting started
When an existing application lands on your desk, there are a number of things to do before you

start changing existing code or writing new code. In some situations, you need to address legal

issues. In others, you may need to find the source code. You also want to examine any

documentation that exists and take a first look at the code to get a feeling for what faces you.

Legal issues

Let me preface this section by stating that I'm not a lawyer, nor am I offering legal advice here.

This discussion is meant to alert you to possible legal issues in working with existing code, so

that you can get appropriate legal advice.

The big concern with any existing code is the matter of ownership. If you work for the company

that wrote the code, this is not an issue. But if you are an independent consultant or an employee

of a software development company, it's a concern on every project involving an existing

application. In-house developers may face legal concerns regarding software purchased by their

companies.

Before you modify any code, you need to know that you have the legal right to do so. For that to

be the case, the person asking you to make the changes must have appropriate intellectual

property rights. Ask for documentation of those rights, either proof that your employer/client

owns the copyright to the code or a release from the copyright owner, giving your

employer/client the right to modify the code. Get this in writing, so that you don't open yourself

up to accusations of copyright infringement. If you have any concerns on this front, speak to a

lawyer who focuses on Intellectual Property rights.

Get the code

Once you're sure you may modify the code, the next step is ensuring that you actually have the

code to be modified. Sometimes the problem is having no source code at all, while other times,

it's a question of figuring out what actually constitutes the source.

If all you have is executable code, you need a decompiler to create source code. For VFP, the

decompiler of choice is Refox (http://www.refox.net/). Refox can take an EXE and create the

source code files, including forms, class libraries, and so forth. Of course, the files so generated

do not have comments, so getting source code from the client is a better choice.

When the client does provide source code, often there's a lot of extraneous material, such as test

code, code that was replaced, code related to distribution of the application, and so forth. It's not

unusual for the client to give you several sets of source with differences for different users.

Cleaning up this mess and figuring out what's actually used can go a long way toward helping

you understand the application. A first step in this direction is to create a new project and add the

main program to it. Then, build the project to pull in code that's used. While this isn't infallible, it

http://www.refox.net/

gives you a start at figuring out which code is in use. In The Project later in this paper, I'll look at

some utility code to take this process further.

Get documentation

Ask the client for any documentation that exists for the application. This includes original design

documents, developer documents, coding standards and user documentation. Most often, there

will be little or nothing.

Even when documentation exists, it tends to be out of date. On one project, I was given database

documentation. This was a reasonably well-designed document, listing each table, with the

reason for its existence, and listing each field with its explanation. Unfortunately, it had been

created soon after the application was first written (nearly 10 years before I took it over), and the

only updates were a few scribbles about additional values for some fields.

Run the application

Once you have the code and documentation in hand, your next step is to run the existing

application so you can get a feel for whether it works and how it works. You can do a first quick

evaluation of the user interface, and see whether you're dealing with a true Windows application,

a FoxPro 2.x Windows application or a DOS application (even if runs in Windows).

This first run isn't meant to be exhaustive. You're not trying to explore every corner of the

application (unless you've been hired to evaluate it in that way). Find out from the client what the

key pieces of functionality are and try those. See whether they work and if not, what kinds of

problems you run into.

Look under the hood

The next step is to open up the code and the data and take a look. Examine the structure and

content of the data. Check whether tables are normalized and have primary keys defined. Look

for appropriate indexes (especially if one of the reasons you've been brought in is poor

performance).

Look at the main program to get a feel for the architecture of the application. Look for signs that

it uses a framework, whether homegrown or commercial.

Open a few forms and examine them. Ask questions like:

 Are forms based on a form class (or a hierarchy of form classes) or is all the code in every

form?

 Do all the forms use the same approach to data handling? Is there any indication of n-tier

design?

 What classes are the controls based on? In particular, are there classes in use or are all

controls based on the VFP base classes.

 Do the forms look (visually) like they belong to the same application?

 Are controls on the form organized in some logical manner?

If the application includes class libraries, use the Class Browser to get a feel for the hierarchies

involved.

Examine the code for coding standards. Keep in mind that you're not checking whether the

original authors used your personal standards, just whether they used any standards.

Are there comments that actually contribute to your understanding of the code?

Is there a naming convention in use?

Is code appropriately indented?

Consider a more formal audit

In some situations, you may want to perform a more formal audit of the existing system that

results in a report to the client. (I charge at my usual hourly rate for producing such an audit

report.) An audit asks all the questions above, but also collects data about the system.

Ted Roche has a paper on his website (http://www.tedroche.com/Present/2000/E-

MAINTDoc.htm) that contains a template for an audit report. There’s also a tool (linked at

http://www.tedroche.com/papers.php--look for the “Software Maintenance” Source) that scans a

project and produces statistics about the number of files, lines of code and comments. These

statistics can be very helpful both for you to get the big picture and to show the client the

magnitude of his system.

Dealing with the client
From here on out, I'll refer to the person asking for changes as "the client" even though it may be

your employer or another division of your company.

After you've run the application and examined the code, you're in a position to talk to the client

about what he wants and to determine (if you're dealing with an outside client, not an employer)

whether you want to take this project on. Don't be afraid to run away from a project that you

think has no chance of success. Also, don't be afraid to tell a client that an application isn't worth

changing.

Exactly what you say to the client depends on a number of factors, but a big one is who wrote the

original code. If the client or one of his relatives wrote the code, you need to be far more tactful

than if it was written by a former employee. Even in the latter case, you're better off choosing

your words carefully. Telling the client "whoever wrote this code was an idiot" raises questions

about the intelligence of the person who paid for the code. Saying something like "the code

doesn't follow best practices" is likely to meet a better reaction. Often, of course, the problem is

that the code was designed and written for an earlier version of FoxPro, so that what was

appropriate no longer is. Clients can generally understand that the state of the art has changed;

after all, they've seen it with other applications.

It's very important at this stage to set expectations appropriately. If the code is a mess and the

application doesn't work very well, the best advice you can give the client is to replace it rather

http://www.tedroche.com/Present/2000/E-MAINTDoc.htm
http://www.tedroche.com/Present/2000/E-MAINTDoc.htm
http://www.tedroche.com/papers.php

than spend any more money on it. In my experience, many small companies and organizations

are running homegrown applications that could be easily replaced with off-the-shelf software. In

such cases, your job may turn out to be evaluating existing packages and making a

recommendation.

That's exactly what happened when I was called in to a non-profit organization a few years back.

They had a homegrown FoxPro application for managing their member/donor database. The

original developer had maintained the code for them for more than a decade, but was moving on

to other ventures. They hoped I would take over the tasks he'd been doing for them, such as

changing the underlying report every time they wanted to send a form letter out. It was

immediately apparent to me that keeping this application running wouldn't serve their needs

anywhere near as well as investing in software specifically designed for non-profit organizations

like theirs.

In some cases, things work well enough and the code is good enough that you can move forward

with it, but the client needs to understand the consequences of doing so. That may be dated-

looking forms, a less than intuitive user interface, or limited flexibility. Make sure the client

knows what theses issues are before you start working on the code.

Tread softly and leave breadcumbs
One of the first things medical students are taught is the Latin maxim "Primum non nocere,"

which translates to "First, do no harm." The same idea applies to modifying working

applications. As you work with existing code, your first goal should be to avoid breaking what

works. It's very tempting when presented with bad code to start making it better, but until you get

the lay of the land, making anything but the most minor of changes is a bad idea. If the code

works, even if it's dreadful, don't change it without putting a plan in place to ensure that it still

works when you're done.

When you do have to make changes, initially keep them small. Do only the minimum to fix the

problem until you really understand the consequences of your changes.

Whenever you change code in an existing system (meaning any application that has been

deployed), leave a change comment that includes the date and your name or initials, so others can

see what you've done. In VFP, it's easy to add such comments and make them uniform. You can

use either an IntelliSense script or a text scrap in the Toolbox. I use an IntelliSense script,

triggered by the string TEGMOD, that adds a comment in this format:

* Modified 20-February-2007 by TEG

*

The script leaves the cursor on the second line ready for me to add an explanation of what I've

changed. My code for this script is adapted from a script created by Doug Hennig and looks like

this:

lparameters toFoxCode

local lcReturn

if toFoxCode.Location <> 0

 toFoxCode.ValueType = 'V'

 lcReturn = GetText()

endif toFoxCode.Location <> 0

return lcReturn

function GetText

local lcText, nDay, cMonthName, nYear, dToday

dToday = date()

nDay = day(dToday)

cMonthName = cmonth(dToday)

nYear = year(dToday)

text to lcText textmerge noshow

* Modified <<nDay>>-<<cMonthName>>-<<nYear>> by TEG

* ~

endtext

return lcText

You can find some additional scripts along these lines at

http://fox.wikis.com/wc.dll?Wiki~IntelliSenseCustomScripts~VFP#Contents_20S0VIYW2.

Digging into code
When you're ready to start actually making changes, you need to find your way around the

application in order to figure out who does what, where it's done and how. There are several tools

available to help you do this kind of exploration.

The Documenting Wizard

The first place to look for help is VFP's Documenting Wizard. It analyzes a project and creates a

number of reports; it also formats code, handy if the original developer had no standards for this.

For understanding a project, the most useful items created by the Documenting Wizard are the

cross-reference listing and the tree listing. The cross-reference listing shows you every variable,

function, procedure, property, method, etc., in the project, and shows where each is referenced in

the project. The Documenting Wizard puts the same information in a table (FDXREF.DBF), so

you can manipulate it with code as well.

The tree listing shows the hierarchy of calls in the project. (Be sure to choose FoxFont to view

this file, so the lines it creates look like lines.) It also provides a hierarchy of classes.

Unfortunately, the Documenting Wizard is slow, somewhat clunky to use, and somewhat

inflexible. As a result, I use it much less than other tools.

The Debugger

VFP's Debugger is a good way to get a feeling for how a project works. Figure out which is the

main program and run it in the Debugger, then step through to see what happens. Obviously, you

won't want to step through the entire application, but walking the code this way is a good way to

get a grasp on the basic architecture of the application. Use the Locals and Watch windows to

examine the variables and objects of the application.

While you're stepping through code, take advantage of the VFP IDE. Use the Command window

to query the application and the Data Session window to see what tables are open when and what

data they contain.

http://fox.wikis.com/wc.dll?Wiki~IntelliSenseCustomScripts~VFP#Contents_20S0VIYW2

The Coverage Logger, which is available through the Debugger creates a log file showing every

line of code executed while a program is being used. The log can be useful for figuring out the

order in which things are happening. Together with the Coverage Profiler, it can also help you

find sections of code that aren't being executed at all, or sections that are particularly slow.

When you start actually working with the code, the DEBUGOUT command can help you

understand what’s really going on. DEBUGOUT accepts a list of expressions and displays their

current values in the Debugger’s Debug Output window. Use it to trace code execution and the

values of things as the code runs.

The Project

VFP's projects can be explored in two ways. First, a PJX file is simply a DBF with a special

extension, so you can open it as a table and examine its contents. A somewhat easier approach is

to use the Project object that's automatically created when you open a project in the IDE. The

Project object has a Files collection with one item for each file in the project. You can use this

collection to explore the project.

As noted in Get the Code earlier in this document, a good way to start working with an old

application is to create a new project, add the main program and choose Rebuild project. That

pulls in most of the files used by the project. However, it misses any that are used indirectly

(through macros or data-driven approaches).

Once you have the new project, there are several directions to go. First, attempting to build and

run an EXE is a good way to start figuring out what's missing, as well as to see whether the code

actually compiles. Make sure to choose Rebuild All in the Build Options dialog.

In my experience, the files that clients send me for existing applications always include

extraneous material such as little utility programs, programs that are no longer being used,

temporary tables, and the like. The ability to work with the project as an object makes it easier to

clean up this kind of mess. After building a new project, you can run a little code that builds a list

of files in the project directories that aren't used in the project. Listing 1 shows a program that

accepts a project name (with path), and a list of folders (comma-separated or semicolon-

separated), and fills a cursor with a list of all the files in those folders that aren't included in the

project.

Listing 1. Getting a list of files in the project folders that aren't used in the project is a first step toward

cleaning them up.

* CheckForUnusedCode.PRG

LPARAMETERS cProject, cPath

* Look for unused code

LOCAL oProject, nCounter, oFile

LOCAL nDirs, nDir, aDirs[1]

MODIFY PROJECT (m.cProject) nowait

oProject = _VFP.ActiveProject

* First, make a list of all files in project

LOCAL aProjFiles[oProject.Files.Count]

nCounter = 0

FOR EACH oFile IN oProject.Files

 nCounter = m.nCounter + 1

 aProjFiles[m.nCounter] = UPPER(oFile.Name)

ENDFOR

CREATE CURSOR Unused (mFileName M)

* Now traverse directories

* First, make a list of directories

nDirs = ALINES(aDirs, m.cPath, 1, ";", ",")

CREATE CURSOR DirsToCheck (mDirName M)

FOR nDir = 1 TO m.nDirs

 INSERT INTO DirsToCheck VALUES (aDirs[m.nDir])

ENDFOR

LOCAL aFiles[1], cOldDir, cFile, nFilesToCheck, cExt

cOldDir = SET("Default") + CURDIR()

SCAN

 IF DIRECTORY(mDirName)

 CD ALLTRIM(mDirName)

 nFilesToCheck = ADIR(aFiles, "*.*")

 FOR nFile = 1 TO m.nFilesToCheck

 cFile = aFiles[m.nFile, 1]

 cExt = JUSTEXT(m.cFile)

 IF INLIST(cExt, "PRG", "SCX", "MNX", "FRX", "VCX", "QPR")

 IF ASCAN(aProjFiles, FORCEPATH(m.cFile, ALLTRIM(mDirName)), ;

 -1, -1, 1, 7) = 0

 INSERT INTO Unused VALUES (;

 FORCEPATH(m.cFile, DirsToCheck.mDirName))

 ENDIF

 ENDIF

 ENDFOR

 ENDIF

ENDSCAN

CD (m.cOldDir)

RETURN

An alternative way to handle the problem of extra files in the project's directories is to create a

new directory tree and copy over only the files that are actually used. That has the added benefit

of preserving a copy of the project as it existed before you started. (Of course, backing up the

original project is an important step, no matter how you do it.)

The easiest way to do this is to create a new project in the existing project directory, add the main

program and use Rebuild project to get the list of files, and then move the new project (PJX and

PJT) to the new folder. Then, code like Listing 2 (CopyProject.PRG in the session materials) can

copy all the files used in the project into the new directory tree. It even creates the directories as

needed.

Listing 2. This program copies all the files in a project from one directory tree to another.

* CopyProject.PRG

LPARAMETERS cProject, cOriginalPath, cNewPath

LOCAL oProject, oFile, cNewName, cNewFilePath

MODIFY PROJECT (cProject) nowait

oProject = _vfp.ActiveProject

* Copy all files to appropriate directories

FOR EACH oFile IN oProject.Files

 cNewName = cNewPath + STREXTRACT(oFile.Name, cOriginalPath,"",1,3)

 cNewFilePath = JUSTPATH(cNewName)

 IF NOT FILE(cNewName)

 IF NOT DIRECTORY(cNewFilePath)

 MD (cNewFilePath)

 ENDIF

 COPY FILE (oFile.Name) TO (cNewName)

 ENDIF

 IF JUSTEXT(cNewName) = "scx" AND NOT FILE(FORCEEXT(cNewName, "SCT"))

 COPY FILE (FORCEEXT(oFile.Name, "SCT")) TO (FORCEEXT(cNewName, "SCT"))

 ENDIF

 IF JUSTEXT(cNewName) = "vcx" AND NOT FILE(FORCEEXT(cNewName, "VCT"))

 COPY FILE (FORCEEXT(oFile.Name, "VCT")) TO (FORCEEXT(cNewName, "VCT"))

 ENDIF

 IF JUSTEXT(cNewName) = "mnx" AND NOT FILE(FORCEEXT(cNewName, "MNT"))

 COPY FILE (FORCEEXT(oFile.Name, "MNT")) TO (FORCEEXT(cNewName, "MNT"))

 ENDIF

 IF JUSTEXT(cNewName) = "frx" AND NOT FILE(FORCEEXT(cNewName, "FRT"))

 COPY FILE (FORCEEXT(oFile.Name, "FRT")) TO (FORCEEXT(cNewName, "FRT"))

 ENDIF

 IF JUSTEXT(cNewName) = "lbx" AND NOT FILE(FORCEEXT(cNewName, "LBT"))

 COPY FILE (FORCEEXT(oFile.Name, "LBT")) TO (FORCEEXT(cNewName, "LBT"))

 ENDIF

ENDFOR

Another thing you might want to do is compare two versions of a project and get a list of files

included in the original that aren't in the new version, so you can check to see whether these are

used indirectly. Listing 3 shows a program (ListMissingFiles.PRG in the session materials) that

performs this comparison.

Listing 3. This program compares two projects and fills a cursor with a list of all the files in the first project,

but not the second.

* ListMissingFiles.PRG

LPARAMETERS cOldProject, cNewProject

LOCAL oOld as VisualFoxpro.IFoxProject, oNew as VisualFoxpro.IFoxProject

MODIFY PROJECT (m.cOldProject) NOWAIT

oOld = _VFP.ActiveProject

MODIFY PROJECT (m.cNewProject) NOWAIT

oNew = _VFP.ActiveProject

CREATE CURSOR Missing (mFile M)

LOCAL oFile, oNewFile, cFileName

FOR EACH oFile IN oOld.Files

 * Look for each file from the old project in the new project.

 * The filename without path is the key in the collection.

 cFileName = JUSTFNAME(oFile.Name)

 TRY

 oNewFile = oNew.Files[m.cFileName]

 CATCH

 * Used in old, not in new

 INSERT INTO Missing VALUES (oFile.Name)

 ENDTRY

ENDFOR

Code References

The Code References tool (added in VFP 8) is your best friend when you're working with

unfamiliar code. It lets you search an entire project for occurrences of a string. It also lets you

search through a directory hierarchy.

To search in a project, open the project before opening Code References. Once you've done a

search, the Code References window shows the results, with the list of files on the left and the

lines of code on the right, as in Figure 1. When you click on a file name in the left pane, only the

matches within that file are shown in the right pane.

Figure 1. The Code References tool lets you find all occurrences of a string in a project.

Double-click on any match in the right pane to open the file with the matched string highlighted.

Code References can also perform search-and-replace within a project, though there are some

limits on that capability.

You can begin a search by choosing Lookup Reference from the shortcut menu in any code

editing window, so you don't have to explicitly open the tool.

I use Code References in several ways. First, it provides a way to "trace" backwards. That is, if

I'm trying to understand how a particular function or method is used, I can search for it in the

project, as I did for the procedure ChkTime in Figure 1. Then I can look at the calling code to get

some context and, if necessary, search for calls to the calling code, and continue working my way

upwards through a calling chain. ("Calling chain" is a little misleading since this is a

development-time activity, but it mimics working backward through a calling chain at runtime.)

I've also used Code References to check whether a table or field is used in a project, so that I

could remove it. In one recent project, I did some major restructuring of the data tables, adding

primary and foreign keys, and removing repeated data. I then needed to adapt all the code that

used the fields I was removing. Code References let me find all those places easily.

Code References has another face that's handy for walking upward through code. In any code

editing window, the shortcut menu includes View Definition. When you choose that item, VFP

searches for the place where whatever is currently highlighted is defined. You can use this

facility for variables, constants, methods, functions, properties of code classes (classes in PRGs),

and classes. If there's a project open, that project is searched. Otherwise, the search casts a pretty

wide net and you may find matches you didn't expect. If a single match is found, it's highlighted,

opening the file containing the definition, if necessary. If multiple matches are found, a window

(Figure 2) appears to let you decide which one to open.

Figure 2. When you choose View Definition from the shortcut menu in any code editing window, and multiple

definitions are found, this window lets you decide which to open.

Document View

Older applications often use procedure files and program files that contain functions called by the

principal program in the file. The Document View tool (added in VFP 7) offers an easy way to

navigate through these code files. (The tool is also valuable for dealing with classes written in

code rather than in the Class Designer.)

Document View lists functions, class definitions, methods, and constant definitions in the active

"code source." A "code source" can be a PRG file, a class or a form. The tool's shortcut menu lets

you control display of constant definitions and preprocessor directives (like #INCLUDE). Figure

3 shows Document View for the main program of a project I updated, after I’d added an

application class, but before I’d added any methods to that class.

Figure 3. The Document View tool shows you what definitions are included in the current code source. You

can jump right to any item listed by clicking on it.

Dealing with Data
The data design for many of the applications that cross my desk leaves a lot to be desired.

Frequently, data is not normalized and often, the design actually seems haphazard. I think there

are two factors at work here.

First, many older applications were originally designed by non-developers, who didn't know the

rules of normalization. Often, these people approached database design as if they were working

with a spreadsheet, resulting in data being repeated across multiple tables, and in repeating fields

(several columns for a single kind of data instead of using a one-to-many or many-to-many

relationship) within a single table.

Second, often, the needs for the application changed over its lifetime. When that happened, more

often than not, rather than redesigning the database and the code to neatly accommodate the

changes, new abilities were tacked on wherever they could be without a major impact on existing

code.

Doug Hennig tells what may be the ultimate story about adding new data and abilities without

modifying the database:

One particular, very popular, commercial application I've worked with has very

unusual data structures because of the unwillingness of the developers to add

additional fields to the table structures as the business requirements changed. For

example, when email addresses became an important value to store about 15 years

ago, rather than adding an email address field to the company table, the

developers instead decided to add a new record type to a child table and reuse

existing fields for different values. The RecType contains a "P," the Contact field

contains "E-mail Address," and the email address goes into the City field.

However, as email addresses got longer and longer, the 25-character city field

didn't cut it, so now the first 25 characters of the email address goes in the City

field and the rest in the Notes field. Of course, someone could have more than one

email address, so to distinguish the primary email address record from secondary

ones, the second character of the Zipcode field contains a "1."

Web sites are the same except the Contact field contains "Web Site" instead.

Now try to imagine what a SQL statement looks like to display the primary email

address and primary Web site for a given company. It requires multiple joins to

the child table, concatenation of the City and Notes fields, and some unusual

looking WHERE clauses.

As with code, the first thing to do when dealing with bad data design is the bare minimum. While

it's tempting to come in and clean it up, realize that changes to the database almost always mean

major changes to code. Any changes you make need to be carefully planned.

Document the database

The first step is to see what you actually have by creating documentation. Even if you've been

given documentation, chances are it's not up-to-date. (See my story in Get Documentation earlier

in this document.) There are several ways to create documentation for a VFP database.

One way to document a database is by running GENDBC against it. This tool, which comes with

all versions of VFP, creates a program that can recreate the structure of the database. While the

output is very useful, though, it's probably not the best way to get documentation to help you

understand the data. In addition, it works only for databases, not free tables; in my experience,

free tables are more common for older applications.

Sedna introduces a new database documenting tool as part of the Data Explorer, which itself was

new in VFP 9. The context menu for any VFP database now contains Document Database. When

you choose it, a text file is created and displayed, showing the structure of the database. Figure 4

shows part of the output for the example Northwind database.

Figure 4. The new Document Database option in the Data Explorer creates a text file listing all tables, fields,

views and relations in the specified database.

You'll find the code that generates the documentation in the Options dialog of the Data Explorer

(choose Manage Menus, click on the Document Database item and choose the Script to Run tab),

so if you don't like the output it generates or want to add additional information (such as index

tags), you can do so without starting from scratch.

However you create documentation of what's actually included in the application's data, the

harder part is understanding what each table and field represents. If a previous developer is

available to help you with this, take advantage of it. Otherwise, you have to use a combination of

looking though the application code and asking the client; both strategies tend to leave holes in

your knowledge. The Code References tool can be helpful here.

Improving data structures

One of the biggest issues I see with older databases is a failure to provide single-field primary

keys for each table. Often, these tables have several fields drawn from a parent table to provide a

primary key. In addition, it's not unusual for older applications to repeat data rather than use

separate look-up tables.

At some point in the maintenance process, it can make sense to fix these problems. But doing so

can be time-consuming so it's not an automatic decision.

There are three data design problems (all related to normalization) you may want to fix:

1. No primary key or primary key has meaning or uses multiple fields.

2. Data is duplicated in multiple tables. This is usually a consequence of problem #1.

3. Repeating fields are used, that is, a single table has multiple fields for the same kind of

data.

Fixing any of these problems has two consequences. First, you have to fix the code that depends

on the current data structure so that it works with the new data structure. The Code References

tool can be very useful for tracking down references to fields and tables you're changing.

Second, you have to provide a way for current users to update their existing data to the new

structure without losing anything. If you use Stonefield Database Toolkit to manage databases,

you may be accustomed to having that tool handle database updates for you. However, SDT can't

handle these changes because you need to actually modify data, not just data structures. You can

do the conversion as part of the installation process (in a post-Setup executable) for the new

version, or the first time the new version runs.

Why change the database?

Figure 5 shows a database (included in the session materials as Office.DB. Full disclosure: I

created this database, using VFP’s Database Wizard, to demonstrate these problems. This is not a

database I encountered in the wild) that has the first two data problems. Rather than using

surrogate primary keys, meaningful data is used to link tables together. For example, the

EmpNum field of Employee, representing the Employee number, is the acting primary key.

Though you can't tell it from the design, there's a nastier version of this problem in the Task

table. The TaskNum is created by concatenating the department number with two digits. So if a

task is reassigned to another department, either its number should change or it can no longer be

properly interpreted. Of course, any change to TaskNum requires changes to all the records in

Assigned for that task.

In addition, even with data available to link records in different tables, some additional fields are

repeated. For example, in Dept, the department manager is indicated by both ManagerNum

(which is drawn from Employee.EmpNum) and MgrName (drawn from Employee.LastName and

Employee.FirstName). Assigned contains both the task number and its description.

Figure 5. This database needs surrogate primary keys and has data duplicated across tables.

This database also shows a more subtle form of the second problem. The JobType table is

available to populate a combobox of job descriptions, but rather than having a primary key that

then links Employee to JobType, the actual job description is included in Employee.

You may wonder why storing the manager's name or copying the job description is a problem.

Inevitably, this data will change. The manager will get married or divorced. The description used

for the job will be reworded. With the data scattered through several tables, changes like this

have to be propagated from the original table to the others. Using the record's primary key to

point back to it instead means that changes are needed only when the actual connection changes,

for example, when the manager leaves and someone else is appointed manager of that department

or when an employee changes jobs within the company. This is why the rules of database

normalization call for storing each item of data once and only once.

Adding surrogate primary keys

The best practice for primary keys is to use a field that has no other meaning, called a surrogate

key. While surrogate keys can be character or numeric, VFP makes using integer keys quite easy.

Starting with VFP 8, you can use the Integer (AutoIncrement) type for a primary key and VFP

will automatically populate the field for each new record.

Because auto-incrementing integer fields are read-only in VFP, adding them to an existing table

is a three-step process. You first add the new field as an integer, then populate it, and finally

change the new field to AutoIncrement, setting the next available value appropriately. Listing 4

shows a function (AddPK.PRG in the session materials) that handles the task. The function also

creates an index tag for the field, setting it as the primary key if the table is in a database and as a

candidate key for free tables.

Listing 4. This function adds a primary key to an existing table, ensuring that every record gets a unique key.

*PROCEDURE AddPK

LPARAMETERS cTable, cField

IF FILE(FORCEEXT(cTable, "DBF"))

 SELECT 0

 USE (cTable) EXCLUSIVE ALIAS __AddPK

 IF TYPE(cField) <> "N"

 * Add it

 ALTER TABLE (cTable) ADD (cField) I

 * Populate it

 REPLACE ALL (cField) WITH RECNO()

 GO BOTTOM

 STORE EVALUATE(cField) TO nLastID

 * Make it auto-increment

 IF NOT EMPTY(CURSORGETPROP("Database","__AddPK"))

 ALTER TABLE (cTable) ;

 ALTER (cField) I AUTOINC NEXTVALUE nLastID+1 PRIMARY KEY

 ELSE

 ALTER TABLE (cTable) ;

 ALTER (cField) I AUTOINC NEXTVALUE nLastID+1 UNIQUE

 ENDIF

 ENDIF

 USE IN __AddPK

ENDIF

RETURN

To use this function, just pass the name of the table and the name for the new primary key field.

For example, to add a primary key to the Employee table of the Office database shown in Figure

5, call the function like this:

AddPK("Employee", "iID")

This adds an autoincrementing primary key field called iID (my standard name for primary key

fields) to Employee.

Eliminating duplicated fields

Once you've added a primary key to a particular table, you can use that field in other tables to

point into the original table. A field in one table that contains the primary key of another table is

called a foreign key. When one table has a foreign key to another, there's no reason to include any

other fields from the second table in the first.

For example, in the Office database, adding a foreign key to Employee to the Dept table means

we can remove the ManagerNum and MgrName fields from Dept. That way, if the manager's

name or employee number changes, nothing has to change in Dept. (Why would an employee

number change? The company might find that it needs more digits, or might merge with another

company and have to adjust employee numbers.)

Listing 5 shows AddAndPopulateFK, a function that creates a new foreign key and populates it

appropriately. The function takes seven parameters, shown in Table 1. The key idea here is that

one table (the "foreign key table") contains fields that relate in some way to another table (the

"primary key table"). The function adds a field to the foreign key table that contains primary keys

from the primary key table. It determines what values to assign to the new field based on an

expression that relates the two tables.

Listing 5. This function adds a foreign key a table and removes fields duplicated from the parent table while

preserving the relationships between the two.

* PROCEDURE AddAndPopulateFK

* Add FK to specified table and populate it, based on existing data

LPARAMETERS cFKTable, cFKField, cPKTable, cPKField, cPKDataTag, ;

 cFKRelExp, aDropFields

LOCAL cPKFieldAliased, cDropClause

IF FILE(FORCEEXT(cFKTable, "DBF"))

 SELECT 0

 USE (cFKTable) EXCLUSIVE ALIAS __FKTable

 IF TYPE(cFKField) <> "N"

 ALTER TABLE (cFKTable) ADD (cFKField) I

 IF NOT EMPTY(cPKDataTag)

 USE (cPKTable) ORDER (cPKDataTag) IN 0 ALIAS __PKTable

 SET RELATION TO EVALUATE(cFKRelExp) INTO __PKTable

 cPKFieldAliased = FORCEEXT("__PKTable", cPKField)

 REPLACE ALL (cFKField) WITH EVALUATE(cPKFieldAliased) IN __FKTable

 SET RELATION TO

 ELSE

 * No index for desired tag. Use specified expression instead

 USE (cPKTable) IN 0 ALIAS __PKTable

 * Replace aliases in expression

 cFindValue = STRTRAN(STRTRAN(cFKRelExp, cPKTable + ".", ;

 "__PKTable.");

 , cFKTable + ".", "__FKTable.")

 REPLACE ALL (cFKField) WITH EVALUATE(cFindValue) IN __FKTable

 ENDIF

 USE IN __PKTable

 * Index on new FK

 INDEX ON &cFKField TAG (cFKField)

 * Remove extraneous fields, taking tags along

 ATAGINFO(aTags)

 cDropClause = ""

 FOR nField = 1 TO ALEN(aDropFields,1)

 IF ASCAN(aTags,aDropFields[m.nField],-1,-1,1,7) > 0

 DELETE TAG (aDropFields[m.nField])

 ENDIF

 cDropClause = m.cDropClause + " DROP COLUMN " + aDropFields[m.nField]

 ENDFOR

 IF NOT EMPTY(m.cDropClause)

 ALTER TABLE (cFKTable) &cDropClause

 ENDIF

 ENDIF

 USE IN __FKTable

ENDIF

RETURN

Table 1. The parameters to AddAndPopulateFK indicate which table to change, which table to point to, and

what fields can be eliminated.

Parameter Meaning

cFKTable The name of the table to which the foreign key is being added. The "foreign key

table."

cFKField The name to give the new foreign key field.

cPKTable The name of the table that contains the primary key, that is, the table to which the

foreign key table should point. The "primary key table."

cPKField The name of the primary key field in the primary key table.

cPKDataTag The name of the tag in the primary key table to which existing data in the foreign

key table corresponds. Empty if no such tag exists.

cFKRelExp When cPKDataTag is not empty, an expression that can be used to set a relation

between the two tables.

In cases where there is no appropriate index tag in the primary key table (so

cPKDataTag is empty), an expression that can be used to look up a particular

record from the foreign key table in the primary key table.

aDropFields An array listing the fields currently in the foreign key table that can be removed

after adding and populating the foreign key.

For example, you can call the function as follows to add a foreign key to Employee to the Dept

table:

DIMENSION aDropFields[2]

aDropFields[1] = "ManagerNum"

aDropFields[2] = "MgrName"

AddAndPopulateFK("Dept", "iMgrID", "Employee", "iID", ;

 "EmpNum", "ManagerNum", @aDropFields)

The function call can be read: Add a field called iMgrID to Dept. Populate it from the iID field of

Employee by looking up Dept.ManagerNum in the EmpNum index of Employee. Then, remove

the ManagerNum and MgrName fields from Dept.

The function also drops any index tags based on the fields being removed.

In addition to the two functions, AddPK and AddAndPopulateFK, the session materials include

the original Office database and the updated version, and a program, UpdateOffice.PRG, that

makes the changes. Figure 6 shows the Office database after performing the complete set of

updates.

Figure 6. After adding primary keys to each table, and adding and populating foreign keys, the Office

database is a lot easier to work with.

Eliminating repeating fields

Putting repeating fields (such as phone1, phone2, phone3) into a table is a common mistake for

inexperienced database designers. Especially in cases where only a certain number of items are

permitted, having one field or set of fields can seem quite logical.

For example, one application I've worked on handles medical billing. A particular claim is

composed of up to seven services. The original designer of the application created a table where

each claim is one record and there are seven sets of fields for tracking the services that are part of

this claim.

There are two problems with this kind of design. The first is that it can result in very clunky

code, as you have to address each of the repeated fields to do things like get the total for a claim.

The second and more serious problem is that the limit can change. What happens if the rules

change and a claim can contain 10 services? You have to change both the database design and

the underlying code.

A better design is to store the repeated items in a separate table linked to the record to which they

correspond. That is, use a one-to-many relationship. If there is a limit on the number of items that

can be associated with a particular record, it can be enforced in code (though it's best to put the

actual limit in data and look it up, so that changes to the limit don't require changes to the code).

Figure 7 shows a table (included in the conference materials as Original Data\CourseLoad.DBF)

that might be used to track the courses being taken by each student in a high school or college.

It's already on its way to being properly normalized, with a primary key and foreign keys to the

student record and the course records. However, each student is limited to a maximum of five

courses per semester. In addition, creating reports like class lists can be pretty ugly, since you

have to check each of the five course columns. Listing 6 (ClassListOriginal.PRG in the session

materials) shows a query to create a class list for a particular course in a particular semester.

Figure 7. This table shows the courses taken by a student in a specified semester. It's limited to five courses

per student, and creating class lists and other reports requires some unwieldy code.

Listing 6. Creating a class list with the original CourseLoad table means looking is each of the iCourseIDn

fields.

LPARAMETERS iCourseID, cSemester, cYear

SELECT iStudentID ;

 FROM CourseLoad ;

 WHERE cSemester = m.cSemester ;

 AND cYear = m.cYear ;

 AND (iCourseID1 = m.iCourseID ;

 OR iCourseID2 = m.iCourseID ;

 OR iCourseID3 = m.iCourseID ;

 OR iCourseID4 = m.iCourseID ;

 OR iCourseID5 = m.iCourseID) ;

 INTO CURSOR CourseStudents

If one student gets special permission to take six courses in a given semester, this data structure

and the code will fail.

As with introducing primary keys and foreign keys, eliminating repeating fields requires both

changing the code that depends on them (in most cases, simplifying it) and writing code to

preserve existing data. I haven't yet developed generic code (like the AddPK and

AddAndPopulateFK functions) for making this kind of change, but writing the code for a

particular case isn't hard. Listing 7 (MoveCoursesToChildTable.PRG in the session materials)

shows code to create a new table with one record for each course taken. In this example, the

original table is probably no longer needed; more often, the original table contains additional data

other than the repeating fields. The resulting tables are included in the conference materials in the

Transformed Data folder.

Listing 7. Converting repeating fields to records in a child table is straightforward.

* Create the many side of a one-to-many

* table with one course taken per record

CREATE TABLE CourseTaken ;

 (iID I AUTOINC UNIQUE, iStudentID I, ;

 cSemester C(10), cYear C(4), iCourseID I)

SELECT 0

USE CourseLoad ORDER iStudentID

SCAN

 IF NOT EMPTY(iCourseID1)

 INSERT INTO CourseTaken ;

 (iStudentID, cSemester, cYear, iCourseID) ;

 VALUES ;

 (CourseLoad.iStudentID, CourseLoad.cSemester, ;

 CourseLoad.cYear, CourseLoad.iCourseID1)

 ENDIF

 IF NOT EMPTY(iCourseID2)

 INSERT INTO CourseTaken ;

 (iStudentID, cSemester, cYear, iCourseID) ;

 VALUES ;

 (CourseLoad.iStudentID, CourseLoad.cSemester, ;

 CourseLoad.cYear, CourseLoad.iCourseID2)

 ENDIF

 IF NOT EMPTY(iCourseID3)

 INSERT INTO CourseTaken ;

 (iStudentID, cSemester, cYear, iCourseID) ;

 VALUES ;

 (CourseLoad.iStudentID, CourseLoad.cSemester, ;

 CourseLoad.cYear, CourseLoad.iCourseID3)

 ENDIF

 IF NOT EMPTY(iCourseID4)

 INSERT INTO CourseTaken ;

 (iStudentID, cSemester, cYear, iCourseID) ;

 VALUES ;

 (CourseLoad.iStudentID, CourseLoad.cSemester, ;

 CourseLoad.cYear, CourseLoad.iCourseID4)

 ENDIF

 IF NOT EMPTY(iCourseID5)

 INSERT INTO CourseTaken ;

 (iStudentID, cSemester, cYear, iCourseID) ;

 VALUES ;

 (CourseLoad.iStudentID, CourseLoad.cSemester, ;

 CourseLoad.cYear, CourseLoad.iCourseID5)

 ENDIF

ENDSCAN

* Add tags to new table

SELECT CourseTaken

INDEX on iStudentID TAG iStudentID

INDEX on UPPER(cYear + cSemester) TAG Semester

* Remove newly extraneous fields

ALTER table CourseLoad ;

 drop iCourseID1 ;

 drop iCourseID2 ;

 drop iCourseID3 ;

 drop iCourseID4 ;

 drop iCourseID5

USE IN CourseLoad

USE IN CourseTaken

RETURN

Once you've made this change, creating a class list for a particular course is easy, with code like

Listing 8 (ClassListNew.PRG in the session materials).

Listing 8. When you eliminate repeating fields, queries get much easier.

LPARAMETERS iCourseID, cSemester, cYear

SELECT iStudentID ;

 FROM CourseTaken ;

 WHERE cSemester = m.cSemester ;

 AND cYear = m.cYear ;

 AND iCourseID = m.iCourseID ;

 INTO CURSOR CourseStudents

Build conversion code as you go

Once you decide to make changes to the existing database, plan to build the code to convert the

data to the new format as you make the changes to the application. That is, at the same time that

you modify the application to use a primary key for a particular table, put the code to actually add

the primary key (even if it’s just a call to my AddPK function) into a program that will be called

either as part of installation or the first time you the new version of the application runs.

Building the conversion code along the way lets you test as you go, and ensures that you don’t

end up rushing to do this when the new version is ready and the client is impatiently waiting for

it.

Working with forms and classes
While most of the existing applications I've encountered have lots of forms, use of classes is

sporadic. Typically, some forms and controls are based on the VFP base classes while others

were built using the VFP wizards and others may use a few custom-built classes. Often, this

reflects increasing knowledge by the original developer; sometimes, it's the result of several

developers having worked on the project over time.

The first thing to do in this regard is to figure out what you have. What classes are present? How

are they used? Are there any apparent rules? There are various tools you can use to figure all this

out.

The Class Browser

The Class Browser gives you a way to look at what classes are present and get some sense of

what they are without having to open each one. You can also see the class hierarchy and see what

class a particular form is derived from.

To explore a particular class library, open it in the Class Browser. To see the relationships among

several class libraries, open the first using the Open button, then open the others using the View

Additional File button. To see the class hierarchy, make sure the Hierarchical item in the context

menu is checked.

You can also open an entire project with the Class Browser. In the Open dialog, change the Files

of type dropdown to Project and choose the project you want to see. Figure 8 shows part of the

class hierarchy for a project I'm working on.

 Figure 8. The Class Browser lets you see all the classes and forms in a project at once.

You can open a class directly from the Class Browser, so if something you see needs exploration,

you can get there quickly.

Build your own

While the Class Browser gives you a look at what's there, you may need more information. It

doesn't take much code to get some idea of what you have. For one project I worked on, I found

forms based on several different form classes as well as the VFP base form class. To assess the

situation, I wrote the program in Listing 9 (AuditForms.PRG in the session materials). It creates a

cursor with one record for each form, providing the name, class and class library. (At that point

in this project, all the files were contained in a single directory, so I didn't have to drill down.) A

query on this cursor gave me a list of all the form classes in use, and examination of the cursor let

me check whether there was any logic to the choice of class for each form.

Listing 9. This little bit of code creates a cursor listing all forms in the current directory, and showing the

form class each is based on.

* Find out where the forms come from

LOCAL aForms[1], nFormCount, nForm

CREATE CURSOR FormClasses (mFile M, mClass M, mClassLib M)

nFormCount = ADIR(aForms, "*.scx")

SELECT 0

FOR nForm = 1 TO nFormCount

 USE (aForms[nForm, 1]) ALIAS __Form

 GO 3

 DO WHILE NOT (UPPER(__Form.BaseClass)=="FORM")

 SKIP

 ENDDO

 INSERT INTO FormClasses VALUES (aForms[nForm, 1], ;

 __Form.Class, __Form.ClassLoc)

 USE IN __Form

ENDFOR

Later in the life cycle of the same project, I needed to categorize all forms based on their type:

data entry, dialog, reporting, and so forth, and get a count of each type. For this task, I used the

Project object's Files collection. Since there turned out to be no logic to the choice of form class

for the forms, I had to make the determination of type for each, but the code in Listing 10

(CountForms.PRG in the session materials) sped the task up considerably.

Listing 10. This program spins through the forms in a project and lets you indicate the type of each form.

LPARAMETERS cProject

MODIFY PROJECT (cProject) NOWAIT

oProject = _VFP.ActiveProject

DIMENSION aFormTypes[4]

aFormTypes=0

FOR EACH oFile IN oProject.Files

 IF oFile.Type = "K"

 MODIFY FORM (oFile.Name)

 cType = INPUTBOX(;

 "1 for data entry, 2 for reporting, 3 for message, 4 for other")

 nType = val(cType)

 aFormTypes[nType] = aFormTypes[nType] + 1

 ENDIF

ENDFOR

?"Data entry forms = ", aFormTypes[1]

?"Reporting forms = ", aFormTypes[2]

?"Message forms = ", aFormTypes[3]

?"Other forms = ", aFormTypes[4]

As you explore and audit the forms and classes in an existing project, keep in mind that like

projects, class libraries and forms are stored in VFP tables, so it's easy to look inside with VFP

code.

Begin to make changes

As you begin to work with the existing forms and classes, you may find that you need to make

some kinds of changes that aren't well-supported by the Form and Class Designers. Depending

what you want to change, there are a couple of tools at your disposal.

To change the parent class of a form or class, you can use the Class Browser's Redefine

capability. Right-click on the object in question and choose Redefine. The Redefine dialog opens

and you can choose the new parent class, making sure it has the same base class. This is handy

when you need to insert another level in the class hierarchy or move classes from one hierarchy

to another.

The Class Browser is also useful when you want to change the name of a class. Make sure that

every class or form that refers to the class in question is open in the Class Browser. Then click on

the class to change and choose Rename from the shortcut menu. Not only does the class' name

get changed, but the references are corrected. Be aware, though, that only references in VCX and

SCX data are fixed; the Class Browser can't update code references (such as CreateObject()

calls).

HackCX from White Light Computing (shown in Figure 9) offers a way to get inside forms and

class libraries. You can look at the structure, properties and methods for each record in a VCX or

SCX and make changes to it, even adding properties and methods. When you're done, HackCX

recompiles the file. HackCX is available in two versions, a free version and a Professional

version; www.whitelightcomputing.com.

Figure 9. HackCX gives you a way to explore and change class libraries and forms.

http://www.whitelightcomputing.com/

Rename controls for readability

One of the most common problems I find in existing code is that the original developer has left

the default names for controls, so that forms are filled with text1, combo1, and so forth. Trying to

understand the behavior of a form that has 20, 30, 40 or more controls with meaningless names

can be trying, especially when the code isn't very good to start with.

In one application I'm working on, some forms have 20 to 25 buttons, all named command1,

command2, and so forth. To make my job easier, I wrote a tool to rename the controls and fix the

code. The tool, Control Renamer, can be run independently or as a builder. When you call it with

a form or class open in the Form or Class Designer, it presents a list of all the controls in the

form or class and lets you specify a new name for each. As you select a control in the list, it's

highlighted in the Form or Class Designer, as shown in Figure 10. When you click the Rename

button, both the control names and the code in the methods of the form or class is changed to use

the new names. (The Control Renamer is included with the session materials; see its readme file

to learn how to use it.)

Figure 10. The Control Renamer tool lets you rename the controls in a form or class, fixing the code

automatically.

Refactor or replace? Start simple

One of the hardest choices with existing applications is when to modify existing forms and when

to replace them. The tough question is often which approach accomplishes the most at the lowest

cost. In my experience, you often start with modifications and move to replacement later.

For example, in one project, I found early in my involvement that every form used to prepare for

reporting had one button for Preview and another for Print, and that the Click method of the two

buttons were identical except for the REPORT FORM command. The two Click methods each

contained the same code to collect the data for the report. In addition, these forms were all based

on the base Form class rather than on a subclass.

Since the code mostly worked, replacing 30 or 40 forms at once didn't make sense. But each time

I needed to deal with one of these forms (perhaps to add a field to the report involved), I added a

method called GetReportData and moved the data collection code there, calling it from the two

Click methods.

A little later, the client asked for some new reports. At that point, I created a form class

incorporating the Preview and Print buttons and the GetReportData method (along with a few

other things designed to keep the form generic). I subclassed my new class for the new reports,

and from that point, began replacing existing reporting forms as I needed to deal with them. Over

time, I also developed some standard controls (such as to gather begin and end dates for the

report) to use on those forms.

If you choose to modify rather than replace, follow the guidelines for safe refactoring so you

don't break things as you go. See www.refactoring.com or Martin Fowler's seminal book

"Refactoring: Improving the Design of Existing Code" for details.

Whether you're modifying existing code or replacing it, you may want to introduce unit tests as

you go. This is especially useful when you're starting with working code; unit tests will help you

ensure that you end up with code that works the same way.

Eliminate extra classes

It's not unusual to find that existing applications contain a lot of class libraries where only one or

two classes are actually used. Often, when developers decide to use a third-party tool (including

those in the FoxPro Foundation classes), they simply pull the entire library into the project rather

than copy the classes they need into a new class library.

Steven Black's Share.PRG makes it easy to prune away those you don't need. It's an add-in for the

Class Browser. When you run it, it lets you point to a class library, and then puts a copy of the

currently selected class and its entire inheritance hierarchy into that library. It's available at

www.stevenblack.com.

The bottom line
Taking over an existing application is quite different from building a brand new application. In

some ways, it's easier since you're not starting from scratch. But in other ways, it's much more

difficult since you need to find a way inside the mind of another developer (or several other

developers).

http://www.refactoring.com/

The tools described here are just a start. I'd love to hear what tools you find useful in this process.

The challenge of figuring out how things work and changing it can be a lot fun. So can the

reaction of users as you make the application easier to use, more reliable, and more capable.

Copyright, 2008, Tamar E. Granor, Ph.D..

